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A numerical scheme is proposed for the solution of two-dimensional Stokes equations in a 

multiconncctcd domain. The numerical procedure is based on a finite-difference solution of 
the governing equations in general curvilinear coordinates. Several examples of catcutalions 

arc presented for a circular particle in a plane channel; the results are compared to known 

analytical solutions. The proposed scheme is applicable 10 the cases of flow around multiple 

stationary or mobing particles of arbitrary shape in channels of arbitrary shape. 1 1986 

4‘;ldemlc I’W\. Inc. 

INTRODUCTION 

A numerical procedure is developed for the solution of two-dimensional quasi- 
steady creeping flow equations for an incompressible fluid in a general multiconnec- 
ted domain. A particular application discussed in the paper is the flow around a 
particle or a group of particles in a channel of arbitrary shape. The problem of siow 
motion of rigid particles in narrow channels is important in a variety of engineering 
and biomedical applications. For example, it can serve as a model for the motion of 
binary mixtures through porous beds in chemical cnginecring or for the motion of 
red blood cells and leucocytes in microvessels. The knowledge of flow through 
individual channels can subsequently be utilized in constructing flow in networks. 
Despite its significance only a few investigators have applied numerical methods to 
treat the problems of particle motion in channels or tubes. A finite clement solution 
for the analysis of axisymmetric creeping flow around an infinite train of equally 
spaced particles in a round tube was developed in [I]. A similar axisymmetric 
problem was treated in [2] by a finite-difference method; the Marker-and-Cell 
(MAC) method was employed for finite Reynolds number flows and a modified 
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method (MACRL) [3] was applied in the case of low Reynolds number flow. The 
authors reported good agreement with analytical solutions [4, 51 for a train of 
spherical particles in axisymmetric creeping flow. Recently, collocation solutions 
were obtained for axisymmetric and nonaxisymmetric motion of a spherical particle 
between two parallel planes in Poiseuille and Couette flows, and in the case of 
sedimentation [6, 7, 81. 

Few results are available for the problem of two-dimensional flow with particles 
in a channel. The results are limited to analytical solutions in the form of 
asymptotic expansions for the case of plane channel and axisymmetrically situated 
circular particle. No solutions have been found for more general cases. The present 
work is an attempt to fill this gap. The finite-difference method developed here for 
the solution of Stokes’ equations in vorticity-stream function form incorporates 
numerical generation of boundary-conforming coordinate systems (e.g., [9]). The 
boundary-conforming coordinate systems are generated as solutions of a set of two 
elliptic quasilinear partial differential equations. The use of numerically generated 
boundary-conforming coordinates is an important element of the proposed 
procedure; it eliminates error due to interpolation at the curvilinear boundaries, 
allows the resolution of high gradients in narrow gaps, and significantly facilitates 
computations and programming due to “matrix” arrangement of grid functions. 

The following sections describe the Stokes equations for incompressible, two- 
dimensional, quasisteady flow in a curvilinear boundary-conforming coordinate 
system; the analytic boundary conditions; the scheme for calculating the 
hydrodynamic force and torque exerted by the fluid on the suspended particle; and 
the numerical procedure for solving the equations together with the computational 
boundary conditions. 

GOVERNING EQUATIONS 

The stream function, I+V, and vorticity, o’, are defined as follows: 

Let H be a characteristic length, and U be a characteristic velocity of the problem. 
Dimensionless variables are introduced by the relationships 

I x=x y” 
I 

U2 
I 

H’ H’ u’ 
V2 

u’ 
(3) 



FLOW IN CHANNEL WITH PARTICLES 75 

Using (1) (3) the dimensionless Stokes equations in vorticity-stream function form 
(e.g., [7]) are 

where the indices X, y denote partial derivatives with respect to the corresponding 
variable. The derivatives of pressure can be expressed in terms of the derivatives of 
vorticity 

dp 
2s 

(6) 

Consider a coordinate transformation 

x=x(<, ?)> Y=J(t? ‘?I (7) 

defined as a solution of two elliptic quasilinear partial differential equations [S], 

g,,.we;-2g,,xe,,+g,,s,,= -G2(Px,+ Qx,,? 

‘~22~‘:~ - 2~32):~~ + ~1 IL’,,~ = - G2(& + QY, 1, 
(8) 

b n* 

FIG. 1. An example of region transformation. 
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where 

g11=-$ +.I$, gl2=xrx,,+YtYq> g22=x;+y;. (9) 

G is the Jacobian of the transformation 

G = XEY, - X,Y~ (101 

and p = PC<, r) and Q = Q(l, Y) are functions chosen to control the spacing of 
coordinate lines in the x-y plane. 

The mapping (7) is utilized to transform the flow domain with generalized cur- 
vilinear boundaries into a domain with rectilinear boundaries on the “com- 
putational” plane t-r as illustrated in Fig. 1. The system of equations [l 1 ] is 
solved by an SOR method (see, e.g., [lo] ). An example of the transformation for a 
circular particle in a bifurcating channel is shown in Fig. 2; the lines in the physical 
x-y plane correspond to lines 5 = const. and r] = const. in the computational plane. 

Equations (4) and (5) are now transformed to the new coordinates 

V&w = G-2[g,20rS - 2gl,(ur, +g,,o,, + G2Pw, + G*Qo,] = 0, (11) 
V&$ = -0.l. (12) 

Equations (6) become 

PE = G-‘k,,~r-gg,,o,), Pq=G-‘(g 2205 -gg,*q). (13) 

Here the indices t and q denote differentiation with respect to the corresponding 
variable. 

a 

b 

FIG. 2. Coordinate system (a) for the mapping shown below (b). 
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BOIJNDARY CONDITIONS 

Consider a channel of an arbitrary shape, for example as shown in Fig. 1. For the 
sake of brevity, in the following formulations, a single rigid particle of an arbitrary 
shape with the boundary 1; will be considered; however, all procedures described 
below are easily extendable to the case of N particles. The boundary of the channel, 
f, consists of the solid part, r,, and the fluid part, f, (channel inlets and outlets). 
The fluid velocity is assumed to be given on both I‘, and I’,. Additionally, the trans- 
lational velocity of a point c within the particle, li,., and the angular velocity of the 
particle Q, are specified. Thus, the velocity distribution on the particle boundary, 
I‘,, is given by 

u= u, -Q(I’-L’<), 

t: = v,. + Q(x -xc), 
(14) 

where (c’, , V,.) are the Cartesian velocity components of the point c, and (x,., ~0 
arc its coordinates. 

Equations (4) and (5) arc equivalent to a single biharmonic equation for the 
stream function. It is more convenient at this point to formulate boundary con- 
ditions for the stream function because there are no “natural” boundary conditions 
for the vorticity. A possible way to pose the boundary value problem for a bihar- 
manic equation is to specify the function and its normal derivative on the boun- 
daries (e.g., [l I]). Using (1) one can determine the stream function at the channel 
boundary 

where @A is an arbitrarily specified value of the stream function at a point A on the 
boundary, and u and v are given Cartesian velocity components on the boundary. 
Similarly, 

where C is an unknown constant that will be determined later, and the velocity 
components u and t‘ are given by (14). 

Let fi be a unit vector normal to the boundary and directed into the fluid; its 
angle with the positive x axis is denoted by c(. At the boundary 

2* -= 
dn 

-zicosx+usinr. (17) 

The biharmonic equation for 1c/ with boundary conditions (15)-( 17) has a unique 
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solution for each value of the constant C in (16) if the boundary and the velocity 
distribution are sufficiently smooth [ll]. Once the stream function is known, the 
vorticity can be found from (5) and the pressure distribution from (6). 

Consider a contour L, enclosing the particle as shown in Fig. 3a and calculate 
along this contour: 

(18) 

Obviously, the pressurep must be a single-valued function of the position, thus q 
must be equal to zero. This condition is not satisfied automatically, however, for an 
arbitrary choice of C. If C in (16) is considered as a parameter then, due to the 
linearity of the problem, q in (18) must be a linear function of C for a given contour 
L P’ 

q=l,C+&. (19) 

Thus, an additional condition q = 0 determines the parameter C in (16). 
The numerical scheme described below deals with two coupled second order par- 

tial differential equations (4) and (5) for vorticity and stream function rather than 

a /---A 

b 
I---------l 

*L-------.A 
’ B-t L B-* 

E 

FIG. 3. Integration contour. 
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with a single biharmonic equation. This approach makes it necessary to formulate 
computational boundary conditions for vorticity in addition to the conditions dis- 
cussed above; these additional conditions will be described below as a part of the 
numerical scheme. 

CALCIJLATION OF THE FORCE AND TORQUE ON THE PARTICLE 

Assuming that the stream function, vorticity, and pressure fields in the fluid are 
known, and therefore the velocity components can be calculated, one can find the 
force and torque exerted on the particle. In the transformed coordinates introduced 
earlier, the force and torque are given by 

7‘= -[ {[px+(2Q24y] x<+ [pp(252~w)x],:,} dc 

- {[px+(25~-w)~]x,,+[p~-(252-~~,)~]~,1d~, c 

where 

03) 

(21) 

(22) 

(231 

It can be shown that the integrals (20) and (21) can be computed over any closed 
contour containing particle [12]. Recognizing that shifting the contour of 
integration from the particle surface presents significant computational advantages 
the integrals in (20) and (21) arc calculated along L,* (Fig. 3b). The integral in (22) 
is computed along I-,*. 

Because the equations of motion are linear, the force and torque on the particle 
can be presented as a sum of the following terms: 

(a) a translational part due to the particle motion with velocity Li,. with the 
fluid velocity being zero at all other boundaries, 

(b) a rotational part due to the particle rotation with angular velocity Q with 
the fluid velocity being zero at all other boundaries, and 

(c) a part due to the motion of fluid at the boundaries of the region while the 
particle is at rest. 
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Thus the force and torque exerted by the fluid on the particle can be expressed as a 
sum 

(24) 

where the elements of the resistance matrix A, are functions of the geometry of the 
problem. It has been shown [9, 131 that under certain conditions, which are 
satisfied in the present case, the matrix A, is symmetric. 

In many cases one is interested in the velocities of a free particle when there are 
no external forces applied to it except for the hydrodynamic forces. In accordance 
with the assumption of quasisteady flow made above, one can also assume that the 
motion of the particle is quasistatic, i.e., the sum of forces acting on the particle is 
zero. The relationship (24) can then be considered as a set of linear algebraic 
equations with respect to the velocities U,, V,, and Q provided that the coefficients 
in (24) are known. To determine the coefficients, the forces and torque on a 
quiescent particle in a moving fluid are first calculated, yielding the last column in 
(24). To determine the rest of the coefficients, we calculate the forces and torque for 
three different sets of velocities ( UC1 , V,, , Q,), (UC,, VCZ, QJ, and ( UC3, V,, , SL,) 
and solve the set of equations (24) for the nine coefficients A, (i,j= 1,2, 3). In the 
present calculations the following sets were considered: ( Ucl, 0, 0) (0, VC2, 0), and 
(0, 0, 52,). It should be noted that, theoretically, there are only six independent 
coefficients in the matrix A, due to its symmetry. Therefore, it appears that only six 
equations generated by two sets of velocities are sufficient for their determination. 
In reality, however, the forces and torques are calculated with certain numerical 
error. As a result, the computed matrix is not perfectly symmetric and it is 
necessary to determine all nine coefficients of the matrix. Thus, to determine the free 
particle velocities, the fluid mechanical problem for flow around a particle has to be 
solved four times with different specified particle velocities. 

In the case where there is an external force Fr,, Fze, and/or torque, T,, exerted 
on the particle (e.g., due to buoyancy) the equations of particle quasiequilibrium 
become 

F, = Fe, Fz=Fze, T= T,, (25) 

where the left-hand sides are given by (24). The coefficients A, are independent of 
the external forces, and therefore can be determined from the procedure described 
above. Solving (25) for UC, V,, and Q yields the velocities of the particle in the case 
of a constrained motion. 

Once the velocities of the particle are known, the trajectory of the particle, x,(t) 
and y,(t), and the angle, a(t), between a fixed line in the particle and the positive x 
axis, can be determined by integrating the equations 

dxc - UC, dye 
dt- dt- - v,, dG”-Q z- ’ (26) 
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where li,., V,. and Sz are function of x,., yC, and LX Initial conditions 

define the initial location and orientation of the particle. 
In the following section the numerical implementation of the outlined solution 

algorithm will be described. 

FINITE-DIFFERENCE EQUATIONS AND NUMERICAL SOI.UTION 

In this section the numerical algorithm for the fluid mechanical problem is for- 
mulated. The system of Stokes equations (11) and (12) in the vorticity-stream 
function form in the transformed (computational) plane is approximated using 
second order central finite-difference formulae 

L~,,~~g*2(ll/~+l,,-2~i.j+r//i-.l,j)-28l2(~i~1.~-I-~r+I.i I---tit I,/+ 1 

+ *i I..,-I)/4+1511($i., + I -211/,j+tit.j l)+pG2(IcI~+I,,--~i 1.,)!;2 

+QG’($t.j+.l-Ic/;,, 1)/2= -G2wi,,t (281 

L,,,Q=o’ (291 

where L ,., is a finite-difference operator at a point 5 = i, r] =,j. The coefficients g,:, 
!?I,, g22, I’, Q, and Jacobian G, given by (8)-( lo), are evaluated at the point (i,.j). 

It is necessary when solving the difference equations (28) (29) to have values of 
both the stream function and vorticity at the boundary. In a preceding section, we 
have described how the stream function can be specified at the channel boundary 
using (15), and at the particle boundary using (16) up to an unknown constant C’. 
The numerical procedure for determining the constant C will be described later in 
this section. 

The value of vorticity at the boundary is obtained from (28) and the no-slip, no- 
permeability conditions at the wall are obtained as follows. First, the derivatives of 
the stream function are expressed via velocity components 

I//< = uy, - GX;, 
(30) 

I$$) = uys - Lx,,. 

The derivatives of the stream function (30) are discretized using an expression of 
third order accuracy 

Clclq)j= 

2$j+ 1+3$,,-6+j I +II/, 2 
2 (31) 
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Using Eq. (28) (with P = Q = 0 for brevity) and substituting for points outside of 
the domain one can express the vorticity at the boundary shown in Fig. 4a, 

Oi,j= -{g22(+i+l,j- 2$i,j+ ~i-l,j)-g12C3(~~)i+l,j-3(~~)i-l,j 

+ 2(tii+ 1, j- 1 -1G/i-l,j-l)+3/2(tii-l,j-tii+l,j) 

+ (tii-l,~-2-*i+l,j-2 )/21/2+~llC3(a(/~)i,j+41cIi,j-l-7/2*i,j 
(32) 

- f$i,j- 21}lG2, 

where the derivative tj, is calculated with the help of (30). The resulting expression 
(32) is accurate to second order. However, if instead of (31) a second order 
expression is used, e.g., two point central difference, then the expression for boun- 
dary values of vorticity would be only accurate to first order. 

A problem in implementing the no-slip boundary condition arises in cases where 
a smooth curve in the physical plane corresponds to a curve with a corner in the 
computational plane, e.g., in the case of a particle contour. Since there is no 
physical singularity in the vorticity field at the corners, interpolation is used to 
determine vortivity values at such points. In the case shown in Fig. 4b the 
corresponding formula is 

where 

Oi,j= 
si+l,j Oi,j-1 +si,j-lwi+l,j 

si+l,j+si,j-l ’ 
(33) 

si+ l,j= J(xi+l,j-xi,j)2+ (Yi+I,j-Y&j)*, 

Si, j- 1 = J(xi,j-I-xi,j)2+(Yi,j-l-Yi,j)2~ 

Similar formulas are derived for other corner points. 
The solution algorithm for the case of flow in a channel with a particle can now 

be described step-by-step. Note that as soon as the constant C in (16) is specified 
the algorithm is essentially that of [16]. Assume that the coordinate grid has 
already been generated and that the coefficients (9) and (10) are known at every 
point of the region. First, the constant C in (16) is assigned a value, C = C,. Then 
an initial approximation for vorticity and stream function is specified at all points 
inside the region and the values of vorticity on the boundary are calculated from 
(32) and similar relationships. The equations (28) and (29) can be solved using an 

a b i,i 
iC1.j 

. i.j+ 1 

L”‘,‘fll,l, 
I,i i,j-1 

I- 

. 

l i,j-1 
i+l,j-7 

FIG. 4. Boundary points in the transformed plane. 
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SOR procedure. The overrelaxation factor, K, is calculated 
c131. 

K=2A((l-$ -/3)lP), (34) 

where 

P=~(cor~+cOS~)2. 
: 1, 

83 

using the relationship 

Nr and N, are the number of points in the < and yl direction, respectively, and the 
factor A was determined experimentally (close to unity). For the first iteration, 
K = 1 is used since this minimizes the error [ 153. For subsequent iterations K is 
computed from (34). The sweep direction is changed every iteration, and the num- 
ber of SOR iterations is kept low (6 IO) because of the tentative nature of the 
boundary conditions for vorticity. The computed values of vorticity and stream 
functions are then smoothed 

,,;; ‘=rr:;,+k(M’yf ‘,‘2-)tf,), (35) 

whet-c k is the underrelaxation factor; it is set to be 0.7 for vorticity and 0.3 for 
stream function. Two parameters characterizing the convergence error can be 
defined: 

(36) 

The outer iteration process is continued until the following convergence criteria arc 
met 

E! <I: and E, < c, (37) 

where I: is a preassigned parameter taken to be 0.0001. If the criteria (37) are not 
satisfied the outer iteration is repeated starting with recalculation of the boundary 
values for vorticity. If the criteria (37) have been met, the integral 

is calculated. The integration contour is shown in Fig. 3b; B: is the beginning and 
B* is the end of the integration path L,. * As was discussed above, q #O for an 
arbitrary choice of C. To determine the value of C which would yield q =0 the 
described calculations are repeated twice for two different values C, and C2; the 
respective values of the integral arc q, and qr. Then, the coefficients in Eq. (19) are 
determined and the value of C corresponding to q = 0 is found from 

c=c’,=q, 
cl-c, 
-+C,. (39 1 
9, -Y2 
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Once Co is determined, the solution ($, o) is obtained as a linear combination of 
the solutions (el, or) and (I&~, 02) corresponding to the constants C, and CZ, 

co- Cl Cl-CO o=c,coc,++w c,-c, 2y 

*= ~*l+g$~2. 
1 2 1 2 

(40) 

To complete the solution, the pressure distribution is found from (13), and the force 
and torque are obtained by computing integrals (20)-(22). 

SAMPLE APPLICATIONS 

The described numerical scheme has been applied to a variety of problems of par- 
ticle motion in a channel. The detailed results of these studies will be reported 
elsewhere; here we only present comparisons with the previously known solutions 
to provide validation of the proposed scheme. 

The problem of flow around a circular particle in a plane channel has been 
investigated in detail; the geometry of the problem is illustrated in Fig. 5. The 
elements of the resistance matrix A, in (24) have been calculated for a wide range 
of particle radius, R, and position of the center of the particle in the channel, y. 
Both variables are scaled by the width of the channel; the ranges in our calculations 
are 0.10 < R < 0.45, 6 + R < y 6 1 - 6 - R, where 6 is the gap between the particle 
and the wall. The scheme allows accurate calculations when the particle almost 
touches the channel wall; the smallest gap that we have been able to consider was 
6 = 0.0001 of channel width. The calculated results cover significantly wider range 
than previously known solutions [17-191; the previous solutions were obtained 
only for axisymmetrically situated particles, y= 0.5. Asymptotic expansions in R 
were used to obtain the analytic solutions, which limited the solutions to the case of 
relatively small particles, certainly R < 0.25. 

The horizontal force, FIO, on a quiescent axisymmetrically situated circular par- 
ticle in a Poiseuille flow (parabolic velocity profile in the channel far from the par- 
ticle) was calculated by Faxen [ 171 in the form of an expansion containing powers 
of R. From the symmetry of the problem it follows that the vertical force, I&, and 
the torque, 7’,, are equal to zero. Table I lists the values of El0 calculated with the 

I * + I 
X x=L 

FIG. 5. Geometry of the problem. 
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TABLE I 

Horimntal Force as a Function of Particlc Radius 
on a Quiescent Particle in Poiseuille Flow 

R 
--. .-~-. 

0.050 
0.075 
0.100 
0.125 
0.1 so 
0.075 
0.200 
0.225 
0.250 
0.275 
0.300 
0.325 
0.350 
0.37s 
0.400 
0.425 
0.450 

Faxen [ 17 ] 
..--. ..-- 

13.36 
18.29 
24.3 1 
31.94 
41.85 
55.00 
72.94 
98.52 

138.5 

Present work 
-.--.- 

24.08 
31.49 
4!.39 
54.27 
7179 
96.32 

130.8 
186.0 
2SY.6 
384.4 
5’17.6 
996.5 

1834 
3966 

II480 

help of Faxen’s equation [ 171 for R d 0.25, and the values calculated by the present 
method for 0.10 < R 6 0.45. The accuracy of Faxen’s equation is best for small R 
and deteriorates as R increases; the equation has a singularity at R = 0.316 where 
the force goes to infinity. It is clear, however, that the force must bc finite for 
R < 0.5 and increase asymptotically to infinity as R approaches 0.5. To assess the 
influence of the number of mesh points on the calculated force and torque com- 

TABLE II 

Calculated Force and Torque on a Quiescent Particle R = 0.2 
in Poiseuille Flow for Several Different Grids 

F,,, I.‘20 T,, 
. . 

!N, =43, iv, 7 15. N,= 16 70.73 0.0495 - 0.3848 
N,=61. Xv,.=21. NV=24 71.25 0.0015 o.owl 
N, = 73, N, = 25. N, = 32 71.79 0.0034 O.WO5 
x,=94, N,-31, N,=40 71.88 0.0083 0.0007 
iv, = 55, IV, = 19. N, 2 32 73.00 0.0330 --(I.2880 
N,=61, N, - 21. N,= 32 72.57 0.0032 O.OC06 
N, = 61, s’v, = 23, N, 7 32 72.10 0.0086 0.0005 
N, - 79, N, = 27. N,, = 32 71.59 om47 0.0005 
A’, = 85, N,. - 29, .V, = 32 71.47 0.0065 0.0006 
A’,-91. N,=31, N,=32 71.41 0.0056 O.OQO6 
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I& K= 1.604 

8 3 6 B I2 IS IE 21 24 27 30 33 36 33 42 45 

FIG. 6. Convergence history for the case shown on line 3 in Table II. 

ponents we conducted a series of numerical experiments. One of them for a fixed 
geometrical configuration (channel length L= 3, R= 0.2, y =0.5) is presented in 
Table II for a variable number of points along the x axis, N,, along the y axis, NY, 
and on the particle surface, Np. As can be seen from the table, the results are prac- 
tically independent of the number of points on the boundary. In addition, it can be 
noted that because we are interested in integral parameters, the possible gain in 
accuracy per grid node is reduced when the number of nodes is increased due to the 
necessity of integrating over a larger number of points. The CPU time in seconds 
required to obtain the first four solutions from Table II on an AS-9000 mainframe 
computer are 3.16, 4.90, 5.62, and 12.71, respectively. This includes numerical grid 
generation, computation of vorticity and stream function fields, and calculation of 
the pressure, forces, and torque on the particle. The over-relaxation parameter was 
obtained from (34) with A = 0.88 and is not necessarily optimal for these cases. 
Figure 6 shows the convergence history for the third case in Table II. This com- 
putation was done with the optimal overrelaxation factor, K= 1.604. 

An expression for the horizontal force on an axisymmetrically situated particle 
translating parallel to the channel walls without rotation was given by Faxen [17] 
in the form of an expansion containing powers of R. As in the preceding case, the 
expression is valid only for small R; it has a singularity at R = 0.313 where the force 
becomes infinite. The results from Faxen’s equation and the present work are com- 
pared in Table III. Note that the force is equal to the coefficient A,, in the 
resistance matrix (24). 

The vertical force on a particle translating perpendicular to the channel wall was 
calculated in [IS] using the metbod similar to [ 171. The results are compared with 
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TABLE III 

Horizontal Force as a Function of Particle Radius for a Particle 
Translating with Unit Velocity Parallel to the Channel Walls 

R Faxen [17] Present work 

0.050 
0.015 
0.100 
0.125 
0.150 
0.075 
0.200 
0.225 
0.250 
0.275 
0.300 
0.325 
0.350 
0.375 
0.400 
0.425 
0.450 

8.951 
12.33 
16.53 
21.96 
29.16 
38.30 
52.57 
72.51 

104.8 

17.47 
22.81 
30.22 
40.03 
53.12 
73.00 

100.8 
145.6 
207.8 
314.2 
500.2 
856.9 

1621 
3601 

10760 

TABLE IV 

Vertical Force as a Function of Particle Radius for a Particle Translating 
with Unit Velocity Perpendicular to the Channel Walls 

R Westberg [ 181 Present work 

0.050 3.712 - 

0.075 4.834 
0.100 6.105 6.474 
0.125 7.595 7.951 
0.150 9.380 9.830 
0.075 11.56 12.05 
0.200 14.25 14.86 
0.225 17.63 18.21 
0.250 21.90 22.75 
0.275 28.52 
0.300 36.24 
0.325 46.77 
0.350 62.52 
0.375 86.92 
0.400 127.6 
0.425 410.0 
0.450 787.2 
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TABLE V 

Torque as a Function of Particle Radius for a Particle 
Rotating with Unit Angular Velocity 

R Howland and K.night [ 193 Present work 

0.150 0.3042 0.3 109 
0.200 0.5755 0.5876 
0.250 0.9817 1.008 
0.300 1.649 
0.350 2.713 
0.400 4.581 
0.450 9.008 

the present numerical solution in Table IV. In this case the force is equal to the 
coefficient A,, in (24). 

An analytic solution in the form of infinite series was obtained in [19] for flow 
around a rotating particle situated in the middle of the channel. The torque on the 
particle, equal to the coefficient A,, of the resistance matrix (24), was calculated for 
three values of particle radius: R = 0.15, 0.20, and 0.25. Table V presents the results 
of [19] together with the present results. 

The calculated hydrodynamic force and torque are integral variables, i.e., they 
are calculated by integration over the surface of the particle. For additional 
validation of the numerical scheme it would be desirable to examine a local 
property of the solution. The following example provides such validation. The flow 
induced in a closed channel by rotation of the particle represents an example of 
Stokes flow with closed streamlines. Such flows are of considerable theoretical 
interest and have been studied by a number of investigators (e.g., [20]). Figure 7 
demonstrates the streamline pattern generated by a symmetrically situated rotating 
particle in a plane channel of length L = 7 (note that the results described above 
were obtained for a channel of length L = 3; it was shown that the values of force 
and torque do not change if the length of the channel is increased). The flow con- 
sists of a series of eddies; the velocity in the eddies quickly decreases as the distance 
from the particle increases. It is interesting to compare these results with the 

Y 

FIG. 7. Streamline pattern for rotation of a particle R = 0.2 in a channel of length L = 7.0. The values 
of the stream function are shown. 
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numerical solution [20] for a rectangular cavity where the fluid motion is 
generated by the uniform translation of the top wall. It is known [21] that far from 
the moving wall (i.e., asymptotically) the flow should consist of an infinite set of 
eddies having length-to-width ratio equal to 1.39. The results in [20] indicate that 
in the cavity with L = 5 this ratio is approached closely in the third eddy from the 
moving wall . The present result show that for i. = 7 the first eddy closest to the 
particle has a length-to-width ratio approximately equal to 1.39. 

The calculations were extended to compute all of the coefficients in (24) A, j ,.... 
A,,, F,,, FzO, TO as functions of R and y for Poiseuille and Couette flows. Then Eq. 
(24) was resolved with respect to translational and angular velocities of a free par- 
ticle; thus the velocity profiles for the particle center, U(y) and Q(y), wcrc 
calculated for particles of different radii. Also, the case of a particle settling in a ver- 
tical channel was considered, and the translational and angular velocity profiles 
were determined. Finally, an investigation of the motion of a circular particle in 
bifurcating channels was performed and particle trajectories were calculated using 
Eq. (26). Some unanswered questions remain. No special treatment has been used 
for corners in the physical domain. The resulting singularities in the flow variables 
seemed to bc well localized for the cases considered (bifurcating channel) and did 
not affect the overall flow field. However, it is possible that in severe cases or in 
cases where the flow near the corner is of interest some special technique may be 
required. It appears that patching-in an analytical solution in the vicinity of sharp 
corners should produce good results. 

The numerical scheme presented here for creeping two-dimensional flow around 
particles in a channel of arbitrary shape has extended the results significantly for a 
number of classical problems (circular particle in a plane channel) and also has 
obtained the solution where no analytical or numerical results were previously 
available (particle in a bifurcating channel). The scheme can be applied without any 
modifications to the motion of noncircular particles. With some minor 
modifications the scheme can bc applied to the motion of multiple interacting par- 
ticles. 
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